TIST - Innovative Scan Technologies

Size and shape measurement of powders, industrial diamonds or fibres such as flax, hemp, cotton, recycled glass or carbon fibres

News:

Version 7 of the FibreShape, PowderShape and DiaShape software is released, with improved features, such as the integrated and automated scanning and measurement process with the A4 scanner. Short measuring times are becoming even shorter.

Scan the QR Code and watch the video to see how the length analysis of rCF (recycled carbon fibres) is performed with the FibreShape CROSS SC system and get to know the new version 7.

FibreShape -

measurement system for length \& shape analysis

The length and other geometrical properties of fibers or shives are determinant parameters in the production of fiber reinforced composite materials or ligthweight construction.
The fibre characterization provides the information to predict the quality, strength and uniformity of a fiber reinforced composite.
In order to obtain the images of the fibers the FibreShape system relies on scanners with transmissive light units and a digital microscope also operated in transmissive light mode. The analysis, visualization and evaluation are done by the FibreShape software (ISO 9276-1 \& 9276-6). A speciality of the FibreShape systems is that they measure fibers and shives of a large size range in one measurement. Microscopes are employed when a higher resolution is required such as for the thickness measurement in the range of microns.

Overview FibreShape systems

FibreShape SN for the thickness analysis of natural fibers.

FibreShape FA with Samplefeeder Automatic for the analysis of wood shives, hemp hurd and recycled glass fibers.

FibreSape CROSS SC with inlay to evaluate the length distribution of rCF. Real oprical resolution $15 \mu \mathrm{~m}$.

FibreShape D with a real optical resolution of $7 \mu \mathrm{~m}$. Natural fibers and recycled glass fibers with a size range of $12 \mu \mathrm{~m}-1 \mathrm{~cm}(\mathrm{~L}) / 10 \mu \mathrm{~m}-$ $100 \mu \mathrm{~m}(\mathrm{~W})$ ca be measured.

